Binary Egyptian Fractions

نویسندگان

  • Ernest S. Croot
  • David E. Dobbs
  • John B. Friedlander
  • Andrew J. Hetzel
  • Francesco Pappalardi
چکیده

Let Ak*(n) be the number of positive integers a coprime to n such that the equation a n=1 m1+ } } } +1 mk admits a solution in positive integers (m1 , ..., mk). We prove that the sum of A2*(n) over n x is both >>x log 3 x and also <<x log x. For the corresponding sum where the a's are counted with multiplicity of the number of solutions we obtain the asymptotic formula. We also show that Ak*(n)<<n :k+= where :k is defined recursively by :2=0 and :k=1&(1&:k&1) (2+:k&1). 2000 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. N T ] 8 A pr 1 99 8 DENSE EGYPTIAN FRACTIONS

Every positive rational number has representations as Egyptian fractions (sums of reciprocals of distinct positive integers) with arbitrarily many terms and with arbitrarily large denominators. However, such representations normally use a very sparse subset of the positive integers up to the largest denominator. We show that for every positive rational there exist representations as Egyptian fr...

متن کامل

Egyptian Fractions Revisited

It is well known that the ancient Egyptians represented each fraction as a sum of unit fractions – i.e., fractions with unit numerators; this is how they, e.g., divided loaves of bread. What is not clear is why they used this representation. In this paper, we propose a new explanation: crudely speaking, that the main idea behind the Egyptian fractions provides an optimal way of dividing the loa...

متن کامل

Egyptian Fractions with Each Denominator Having Three Distinct Prime Divisors

Any natural number can be expressed as an Egyptian fraction, i.e., P 1/ai with a1 < a2 < · · · < a`, where each denominator is the product of three distinct primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999